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Abstract-Exact temperature solutions and theoretical Nusselt curves, valid for P&cl& numbers ranging 
from 1 to ~0, were obtained for thermal-entry-region heat transfer for laminar flow through concentric 
annuli, subject to a step jump in wall heat flux at z = 0. To allow for the effect of axial conduction, which 
is significant at low P6clet numbers, the inlet fluid temperature was taken to be uniform at z = - co, and the 
first twenty eigenconstants were computed for the adiabatic region (-cc < z < 0) and the heated region 
(0 Q z < co), separately. By constructing two sets of orthonormaf functions from the non-orthogonal 
eigenfunctions, the series expansion coefficients were then determined such that both the temperatures and 
longitudinal temperature gradients for the two regions match at z = 0. The temperature solutions corres- 
ponding to the limiting case of N,, = m show excellent agreement with those reported by Lundberg et al. 

[4], who analyzed the entry-region problem by neglecting axial conduction. 
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NOMENCLATURE 

series expansion coefficients in equation (16) ; 
a constant ; 
a constant given by equation (10); 
a constant given by equation (12); 
series expansion coefficients in equation (17) ; 
specific heat ; 
= 2(r, - rr), hydraulic diameter; 
matrices ; 
= (a2 - l)/ln Q ; 
= D,iipCp/k, P&let number ; 

local Nusselt number defined by equation (41), for the case where step jump 
in heat flux occurs at the inner wall of an annulus ; 
local Nusselt number defined by equation (42) for the case where step jump 
in heat flux occurs at the outer wall of an annulus; 
eigenfunctions for equations (20) and (21); 
R,(r) evaluated at 5 = 1; 
inlet fluid temperature ; 
fluid temperature in the adiabatic region (i = l), and in the heated region 
(i = 2); 
fluid temperature in the fully developed region ; 
bulk fluid temperature in the heated region; 
wall temperature in the heated region ; 

* This work was performed under the auspices of the U.S. Atomic Energy Commission. 
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eigenfunctions of equations (18) and (19) ; 
coefficients in equation (24); 
coefficients in equation (27); 
uniform heat flux at wall ; 
radial coordinate variable ; 
the inner and outer radius respectively of an annulus; 
average fluid velocity ; 
axial coordinate variable ; 
eigenvalues of equations (18) and (19) ; 
eigenvalues of equations (20) and (21); 
Gramm determinant; 
Kronecker delta; 

1 ;;;$?[H,lj; 

= k{[Ti]j - To}/qwD,, dimensionless fluid temperature; 
dimensionless bulk fluid temperature; 
dimensionless fluid temperature in the fully developed region ; 
dimensionless bulk fluid temperature in the fully developed region ; 
dimensionless fluid temperature at a location r] ; 
dimensionless bulk fluid temperature at a location r] ; 
dimensionless wall temperature ; 

= r/r,; 

density of fluid; 
= r1/r2; 
=1+a2-K; 
orthonormal set of functions defined by equation (24); 
a function defined by equation (3) ; 
orthonormal set of functions defined by equation (24). 

1NTRODUCTION 

THE RELATIVE importance of axial conduction in heat transfer to a fluid flowing inside a channel 
depends primarily on the magnitude of the P&let number. For laminar flow through a circular pipe, 
for instance, axial conduction is virtually negligible in comparison with radial conduction if P&let 
number, N,+, exceeds approximately 100. The classic Graetz problem deals with thermal-entry-region 
heat transfer under such a condition. For N,, < 100, however, axial conduction becomes increasingly 
important as N,, is reduced. It ultimately attains an order of magnitude equal to that of radial 
conduction as N,, approaches unity. For a thorough understanding of the heat transfer 
characteristics, explicit temperature solutions, valid for such small P&let numbers, are of great 
theoretical value. Mathematically speaking, however, such solutions are much more difficult to 
seek than those for the Graetz-type problem, because not only does the energy equation contain an 
additional axial conduction term, but that the heat transfer needs to be considered in the infinite 
region, - r; < z < CC, rather than the semi-infinite region, 0 < z < JC. The latter requirement 
arises from the fact that the thermal effect of axial conduction, under ordinary circumstances. 
penetrates into the region 0 > z, thus enlarging the domain of heat transfer. In practice, therefore, 
it is no longer realistic to specify the inlet fluid temperature at z = 0. Instead, such a boundary 
condition should be imposed at z = - CC. 
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A mathematical scheme for solving this type of convection heat transfer problem in the infinite 
region, -cc -C z < co, was recently devised by the present author [2]. The method consists 
essentially of determining the eigenvalues and eigenfunctions for the regions z < 0 and z > 0, 
separately, and then matehing both the temperatures and longitudinal temperature gradients at 
z = 0. To accomplish the matching process, two orthonormal sets of functions were constructed 
from the nonorthogonal eigenfunctions by utilizing the Gramm-Schmidt orthonormalization 
procedure [3], and the series expansion coefficients were then determined by solving a system of 
simultaneous equations. For laminar flow inside a circular pipe with a step change in wall heat flux 
at z = 0, the proposed scheme was shown [2] to yield Nusselt numbers that agree almost perfectly 
with those reported recently by Hennecke [l], who solved the same set of partial differential 
equations numerically using the finitedifference approach. It was also demonstrated that the 
theoretical solution obtained by the proposed method, in fact, represents a more generalized 
thermal-entry-region temperature solution, which reduces to that for the corresponding Graetz 
problem as N, approaches inifinity. 

The objective of the present study was to apply the same technique to analyze the corresponding 
problem for laminar flow through concentric annuli, for which no solutions, numerical or 
theoretical, have hitherto been reported in the literature. Theoretical solutions are presented in this 
paper for unilateral heat transfer from either the inner or outer wall of an annulus subject to a step 
change in wall heat flux at z = 0. The opposite wall, in either case, was considered thermally 
adiabatic. Nusselt curves were obtained for P&let numbers ranging from 1 to o=?, for annuli having 
the inner-to-outer radius ratio (r1/r2) of 0.1,0.3,0.5,0.7 and 0.9. As will be shown later, the Nusselt 
numbers corresponding to N,, = CC agree very well with those obtained by Lundberg et al. [4], 
who analyzed the corresponding problem by assuming negligible axial conduction. From the 
explicit temperature solutions, the local temperature profiles in both the adiabatic and heated 
regions were also calculated and illustrated. 

THEORETICAL ANALYSIS 

A schematic diagram is shown in Fig. 1 for laminar incompressible flow through an annulus 
having an adiabatic inner wall and an outer wall that is subjected to a step change in heat flux at z = 0. 
In the analysis that follows, the temperature solutions corresponding to this case will be discerned 
by a subscript, j = 2. By interchanging the thermal boundary conditions at the inner and outer walls, 
one obtains the diagram for the case in which the step change in heat flux is imposed at the inner 
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wall. The temperature solutions for this latter case will be denoted by a subscript, j = 1. In either 
case, the inlet fluid temperature is uniform and equals T, at z = - 00. The energy equations, by 
assuming constant fluid properties and negligible viscous dissipation, can then be written for 
j = 1 or 2, as I 1 

Is2 - 1 
- (r/r2J2 + - In ( In 0 > (r’r2) 2piic, 

1+a2- ( gz - 1 1 
1 a[ 7Jj _ k [ - a2[Tlj + laCTlj - 

3Z ar2 r ar 

+ a2[Tlj 1 
dZ2 

(i = 1 , 2) 2 (1) 
- 

In 0 

where the subscript ‘7” in [ 7Jj (i = 1 and i = 2) refers to the adiabatic region (- co -C z 6 0) 
and the heated region (0 < z < a) respectively. The appropriate boundary conditions to be 
satisfied are : 

For the region - m < z < 0, and forj = I or 2, 

CTIj = G atz= --nc (2.1) 

a[ITIlj 0 -_= 
%r 

atr = r, andr = r2. (2.2) 

For the region 0 < z < co, and for j = 1 or 2, 

CT21j = lITflj asz-r cc (2.3) 

a[T21j 
___ = - ~l,hvlk) ar atr = r, 

a[T21j 
~ = &,&lk) 

Lb 
atr = r2 

where d,,{k = 1,2) is the Kronecker delta, i.e. 

hkj = 
1 if k = .j 

Oifk #j’ 

Atz=O,andforj= lor2, 

[T,Ij(r) = [T&% a[TJj(r) ~P21_Ar) 

aZ =qy-. 

(2.4) 

(2.5) 

(2.6) 

For each value ofj (i.e.,j = 1 or 2) equation (1) represents a set of elliptic partial differential equations. 
Their solutions satisfying the boundary conditions (2.1H2.5) are to be matched at z = 0 such that 
the two conditions given by equation (2.6) are both satisfied. To seek the mathematical solutions to 
equations (1)-(2.6), it is advantageous to change the variables by letting [ei]j = k([ T]j - T,)/q,D,, 
q = z/D,,Nper t = r/r2, K = (CJ’ - l)/lno and &(a) = 1 + o2 - K. The above set of equations are 
then transformed, for j = 1 or 2, to: 

I - t2 + K In 5 aEe,lj a’[eJj 1 a[ei]j + 1 
atl = ay2 + - 

a”C@ilj 
2+(0) (I - O)z r at 4(1 - o)~N;,~?Z 

(i = 1,2). (1)’ 
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For the region - co c q < 0, and for j = 1 or 2, 

l1611j = O at?= --co 

a[ellj 0 -= 
a< 

atc=aand<= 1. 

For the region 0 < q < co, and for j = 1 or 2, 

[blj = Cef]j au + m 

(2.1)’ 

(2.2)’ 

(2.3)’ 

a[eJj - = - 6,j/2(1 - a) 
at 

at{=0 

a[eJ j at5 = 1. 

Atq=O,andforj= lor2, 

are,]Ar) = a[e,],(r) 
all 

all 

(2.4)’ 

(2.5)’ 

(2.6)’ 

In equation (2.3)‘, [0,]j (j = 1 or 2) denotes the dimensionless, fully developed temperature solution 
which includes the effect of upstream conduction. It can be derived in the following manner. To 
seek the expression for [0,] 1, for example, a solution of the form : 

P,ll = C,? + VW (3) 

is assumed on the fact that, in the thermally fully developed region, the temperature solution is a 
linear function of r~. Substituting equation (3) into equations (l)‘, (2.4)’ and (2.5)’ then yields the 
following ordinary differential equation and the boundary conditions. 

d2i+G ld$ 

dr2 + rz = co 
(4) 

d$ -1 
-= 
d< 2(1 - a) 

at<=0 

d* 0 -= 
dt 

atr= 1. (6) 

Integrating equation (4) twice, applying the boundary conditions, and then combining the results 
with equation (3) gives : 

[~j1~=(&)V+~(0)(1+$(1_.,)[~(C2-lnr)-$+~ln5] +Cl. (7) 

To evaluate the integration constant, Cl, in equation (7), a heat balance over the region extending 
from z = - (;o to an arbitrary position in the thermally fully developed region is taken. Denoting the 
dimensionless bulk fluid temperature at the latter position by [Q,] 1, one obtains : 
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Since the bulk fluid temperature at any axial position, r, is given by the general expression 

1 

8,=- 4 
+(a)(1 - 07 s 81 - t2 + K In 0 0,,d(, (9) 

(T 

substitution of equation (7) into equation (9) followed by an integration and comparison with 
equation (S), gives, after considerable algebraic manipulation, the following expression for Cl. 

Cl = 
@(s)(l ,I& - a)’ K 

25 11K++” 
48 - 9 1 ( 

+ !&!++;~2 02 
) 

Combining equations (10) and (7) yields the expression for [e,.],, which differs from that for the 
case of no axial conduction in that it contains an additional term. 40/(1 + G) A$, By proceeding 
in the same manner, [0,l2 can be found to be : 

where 

c2 = 
-1 

J&$1 + o)(l - a)’ i( 47R 
-- 

; 
Kt-$K’ 

> ( 
+ f-;K+;6K2 02 

) 

The boundary condition, equation (2.3)‘, is now completely specified. To solve equations (l)‘-(2.6)‘. 
for [O,lj, it is further convenient to let 

[O,]j = [Oz]j + [Of]j G = 1 or 2) (13) 

from which one can readily conclude that [O,]j needs to satisfy the following partial differential 
equation and the boundary conditions. 

1 - r2 + K In [ L 1 d[@,]j a’[@Zlj l a[021j 1 

2&(T) (1 - G)2 all ->F+- 
a2[@21j ___- 

5 X + 4(1 - (T)2N;, dV2 (14) 

[@2lj --$ O as ye -+ rc8 (15.1) 

a[021j 0 

a< 
at(=aand<= 1. 

The temperature solutions, [t3,]j and [OJj, are now sought in the form: 

[el]j = “!I [IBn]j W3ev [&d 

[@,]j = J, [C,]jRA5)exp [-Pn’~l 

(i = 1 or 2) 

(15.2) 

(16) 

(17) 
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which satisfies respectively equation (2.1)’ and equation (15.1). In equation (16), ~1, and Y.(t) are the 
eigenvalues and the corresponding eigenfunctions of the following characteristic equation and the 
boundary conditions. 

d2Y, ldY, 
T+,,+al 

a,” (1 - 5’) + R ln 5 
4(1 - a)2 N:, - 2&a) (1 - 0)2 

y = 0 

d5 ” 

dY”-0 
dt - 

at<=oand<= 1. 

(18) 

(19) 

Similarly, pn and R,(t) in equation (17) represent the eigenconstants for the following characteristic 
equation and the boundary conditions. 

+ (1 - 5’) + K In 5 

29(a) (1 - a)2 1 Rn = O w-9 
dR,_() 
d5 -- 

att=aandl= 1. (21) 

It is noteworthy that the negative eigenvalues of the former set of characteristic equations, i.e. 
equations (18) and (19), actually correspond to the positive eigenvalues of the latter set of 
characteristic equations, equations (20) and (21) and vice versa. The two sets of characteristic 
equations are, hence, intrinsically equivalent. The first twenty eigenvalues and the corresponding 
eigenfunctions were determined, in this study, for annuli having G( = r,ir,) values of 0.1, 0.3, 0.5, 
0.7 and 0.9 and for N,, ranging from 1 to m. For N,, < 100, the eigenvalues show a tendency to 
become progressively smaller as N,, decreases. The eigenvalues are, however, quite insensitive to the 
variation of N,,, if N,, exceeds - 100. For reference, the computed eigenconstants are tabulated 
in Table 1 for N,, = 1 and g = 05. For a pair of fixed N,, and cr, the eigenconstants applicable to 

Table 1. Calculated eigenvafues and the related constants 
D = r,/r, = 0.5, N,, = 1 

n % P. [RI 1 rc.ll [B.lz [C”12 ,@n d5 

1 0.999310 2.45771 1.33723 -4,75116(2)* 2.68973 6.95267(2)* -3.17070(3)* 
2 2.60096 3.48921 4.58435(2)* - 1.30812(2) -6.38521(2)* - 1.86367(2) 6,90435(3) 
3 3.61979 4.29095 1.16212(2) - 5.83076(3) 1.64379(2) 8.26988(3) - 1.43243(4) 
4 440267 4.96743 5.30962(3) -3,26591(3) -7.51051(3) -4,62423(3) 9.52163(4) 
5 5.06580 5.56306 3.03117(3) - 2-08096(3) 4.28766(3) 2,94565(3) - 2.80348(5) 
6 5.65172 6.10114 1,95805(3) - 1.44055(3) - 2,76799(3) -2.03732(3) 2.82183(4) 
7 6.18242 6.59564 1,36785(3) - 1.05523(3) 1.93389(3) 1.49292(3) -9.87856(6) 
8 6.67108 7.05565 1.00968(3) - 8,06559(4) - 1.42624(3) - 1.13979(3) 1.18508(4) 
9 7.12634 7.48752 7,75420(4) - 6.35905(4) 1,09559(3) 8,99402(4) -4.57786(6) 

10 7.55424 7.89583 6.14608(4) - 5.14785(4) - 8,67198(4) - 7,26735(4) 6WO5q5) 
11 7.95918 8.28407 4.98747(4) - 4,24634(4) 7.0?975(4) 6.00431(4) -2,45171(6) 
12 8.34451 8.65493 4.13318(4) - 3.5699q4) - 5.82077(4) -5.03133(4) 3,48369(5) 
13 8.71282 9.01055 3.47715(4) - 3.03523(4) 4.89937(4) 4.29116(4) - 1.46014(6) 
14 9.06619 9.35267 2.97220(4) - 2,62247(4) -4.1708q4) - 3.6844414) 2.18979(5) 
15 940630 9.68272 2.56501(4) - 2.27659(4) 3.60175(4) 3,22068(4) - 9.47468(7) 
16 9.73455 10GO190 2.24590(4) -2.01059(4) - 3,12620(4) -2,80511(4) 1.48519(5) 
17 IO.05209 10.31121 1.97593(4) - 1.7655q4) 2.75214(4) 2.51441(4) -9.22116(7) 
18 10.35990 10.61151 1,77306(4) - 1,57387(4) - 240577(4) - 2,15488(4) 1.01823(5) 
19 10.65884 10.90356 1.58699(4) - 1.25311(4) 2.14973(4) 2.19246(4) - 5,61137(7) 
20 10.94963 11.18799 l-60089(4) - 2.95197(4) - 1.67277(4) - 3.10362(4) 7.28 163(6) 

* X(a) means X x lo-“. 
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equations (16) and (17) do not depend upon whether the step jump in heat flux occurs at the inner 
or outer wall of an annulus. The series expansion coeffkients, [BJj and [CJj, however, are 
contingent upon such boundary conditions. From equation (2.6)‘, it is apparent that these coefficients 
must be determined such that the following two equations are simultaneously satisfied. 

(22) 

(23) 

Neither R,(5) nor x(5) constitutes a set of mutually orthogonal functions, as is clear from the form 
of equations (18H21). The eigenfunction expansion technique customarily employed for the 
differential equations of the Sturm-Liouville system, therefore, cannot be utilized to evaluate the 
series expansion coefficients. As was done in the previous study [2], therefore, two sets of ortho- 
normal functions, tik and &,, were constructed by linearly combining R, or Y, such that, 

lClk = $r a:R.(& 

and having the properties, 

k = 1,2... (24) 

(25) 

Construction of such orthonormal sets of function is possible by virtue of the fact that each of the 
eigenfunctions, R, or Y, (n = 1,2,3,. . .), constitutes a set of linearly independent vectors. The 
orthonormalization can be performed step by step following the Gramm-Schmidt orthonormaliza- 
tion procedure [3]. For example, 

:R: d<R, 

$1 = R,(S)/(&), $2= : 
f R,R, d5 R, 
b 

and in general, 

vh = 

\R:dt 1 R,R,dt ‘r R,R,_, dt Rl(c) 
b ‘a 

i RzR, dt iR;dC . . . ‘r R,R,- 1 dt Rz(8 
b b 

. 

. . . 

W, dt \R,R,d[ . . . iR,R._,d5 R,(r) 
b Q 

J(A, An- I) 
(26) 

where A, is the Gramm-determinant which can be obtained by replacing the elements in the last 
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column of the above determinant, R,(r), (i = 1,2,. .), by C RiR, dl (i = 1,2,. .). In this study, 
b 

tik and 4k were constructed for k = l-20. By the following linear transformations, R, and Y, can 
be expressed conversely in terms of $,, and &, 

R, = $ ~%(0 yk = “$I 424.(5X k = 1,2,... (27) 

The numerical coefficients, pf: and qt, can be obtained most conveniently by inverting the matrices 
containing ai or bf: as their elements. Substitution of equation (27) into equations (22) and (23) 
yields, for ,j = 1 or 2, 

G’9) 

which now permit determination of the series expansion coefficients, inasmuch as 11/,(t) and 4,(t) 
are orthonormal sets of functions. Thus, multiplying equation (28) by $,, and equation (29) by &,,, 
and integrating from 0 to 1, the following sets of equations result by virtue of the orthonormal 
properties given by equation (25). 

“~~~~~[C,lj~~~i~.o.dc+ f [~~]jaZq:=~[~~jo+6,,1id.dr (/ri= 1,2,...). (31) 
Q k=m d 

The infinite series appearing in the above two equations were truncated, in this study, at m = 20, 
for which their solutions were found to converge satisfactorily. With m = 20, these two equations 
provide forty simultaneous equations which can be solved for the forty unknowns, [C,]j _= [C,,]j 
and [Bl]j c [B,& Thus, letting 

[~]j = 

Cc21 j 

lIdnJ j 
CBll j 

FM, 

[Bml j . - 

[Qj = 
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and 

4 

the system of simultaneous equations can be written, in matrix form, as : 

[Elj[F]j = [~]j 0’ = 1 or 2) 

for which the solution can be written 

@Ii = [E_‘lj [Qj 
The system of forty simultaneous equations was solved by utilizing the Gauss elimination method 
using a CDC 6600 computer. The [EJj matrix was normalized row-wise and reduced to a triangular 
form by transformations using pivotal condensations. The unknowns were then calculated by 
back substitutions. Whenever the computed series coefficients were found to be insufficiently 
accurate, a combination of the Gauss elimination method and an iteration scheme was used to 
improve the computational accuracy. The coefficients, [B& and [C,Jj, thus obtained are tabulated 
in Table 1 for Np, = 1 and g = 05. 

Summing up, the solutions to equations (lH2.6) have been obtained as follows : 

(34) 

+ C2 + $, [IGJ, R,(t) exp [: -Bhl (37) 
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where Cl and C2 are given respectively by equation (10) and equation (12). Availability of the 
explicit temperature solutions now enables derivation of the expressions for local Nusselt numbers. 
Of particular interest are those in the heated region (0 < z < co). Since the bulk fluid temperature, 
in dimensionless form is given by : 

[Oilj = s 
i;(l - 5’ + K In r) [8i]j d< 0’ = 1 or 2, i = 1,2) (38) 

substitution of equation (35) into thids equation, followed by integration, yields 

x i(l - t2 + Klnt)&d5. (39) 

The integral appearing in equation (39) can be simplified to some extent by making use of equation 
(20). Thus, one eventually obtains 

The expression for the wall temperature, meanwhile, can be found by letting 5 = g in equation (35) 
and noting that R,(a) is arbitrarily chosen to be unity. The expression for [Nu] 1 hence becomes 

CNu11 = k{[Tw’y~h[T2]l) = [eJl !_ [0,]1 

= i &a)(1 + $(I - a)2 K > 
y (a2-lno)-$+~021n0j +Cl+i; jCJI 

“= 

m 

x exp (- B.249 + N2 02) c [c.h B.” exp(-Bih) (41) 
PS? 

n=l d 

By going through an analogous derivation, the following expression for [Nu12 can be obtained. 

m m 

+ 
c 

[C,12 K(l) exp(-Bitl) + N2 
PI? 

(:_ 02) 
c 

IC.]2fl~exp(-fl~q)1 5&d{ -l. 
I 1 (42) 

n=l II=1 c7 

It is worth remarking that, as Npe + co, equations (41) and (42) each reduce to the expression for the 
case of negligible axial conduction. 

H 
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DISCUSSION AND CONCLUSIONS 

One of the most crucial parts of this analysis, undoubtedly, is the matching of the temperatures 
and longitudinal temperature gradients at z = 0. To ascertain that the series expansion coefficients, 
[Bn]j and [C”]j, computed by constructing the orthonormal functions and by solving the system of 
simultaneous equations indeed satisfy the required matching conditions, they were substituted into 
the left side of both equations (22) and (23). The results were checked with the right-hand side of 
these equations and it was revealed that these two equations were both satisfied remarkedly well. 

(I) N,, =I (2) Iv,, =5 

(3) N,, =I0 (4) N,, =20 

(5) N,, =30 (6) A’_ = 50 

(7) N,, =uJ (no axial conductIon 

FIG. 2. Local Nusselt numbers [i~u], for o = 0.01 

This proves the validity of the present solutions. By employing the computed eigenvalues and the 
associated constants, the local Nusselt numbers, [Nu] 1 and [Nu]~, were calculated from equations 
(41) and (42) for various PM& numbers. The Nusselt curves thus obtained are shown in Figs. 2-7, 
for annuli having 0 values of 0.01, 0.1, 0.3, 0.5, O-7 and 0.9. As pointed out previously, NPe = GC, 
corresponds to the limiting case of no axial conduction. It is worthwhile, therefore, to compare the 
results for this particular case with those reported by Lundberg et al. [4], who analyzed the 
corresponding problem on the assumption of negligible axial conduction. In [4], only the first few 
eigenvalues and the related constants are reported for several values of a; they were compared with 
those obtained in this study for Np, = co, and excellent agreement was obtained. The local Nusselt 
numbers reported for IJ = 0.1 and u = 0.5 in [4] also agree very well with those obtained in this 
analysis. 
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IO IO’ IO’ IO’ 
39 

(7) (no ma1 conduction) 
27 

4 

3 

23 

IO-’ 10-z lo- 

.? 

2(r,-q) N, 

FIG. 3. Local Nusselt numbers [Nu], and [Nulz for 0 = 0.1. 
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FIG. 4 Local Nusselt numbers [Nu], and [Nu]~ for D = 0.3. 
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FIG. 6. Local Nusselt numbers [Nu], and [Nu]* for 0 = 0.7 
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From Figs. 2-7, it can be observed that, as NPe is reduced to below 100, both [Nu]i and [Nu], 
tend to decrease at q g 0 and become more uniform throughout the thermal-entry region. The 
Nusselt curves for various PM& numbers, however, cross each other and reverse their orders of 
magnitude before reaching the fully developed values. This tendency is exactly identical to that found 
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FIG. 7. Local Nusselt numbers [Nu], and [i~u], for o = 0.9. 

in the previous’ study [2] for pipe and parallel-plate channel flows. It can also be noted that, for a 
fixed value of o, [Nu] I is larger than the corresponding [Nu]~ in general. The two kinds of Nusselt 
numbers, nevertheless approach each other as ~7 + 1, which corresponds to the limiting case of 
parallel plates. On the other hand, as c + 0, [Nulz should reduce to those for the case of pipe flow. 
The [Nu]~ curves shown in Fig. 2 for 0 = 0.01 clearly exhibit this trend by comparison with the 
results obtained for pipe flow in the previous study [2]. 

Figures 8 and 9 illustrate respectively the variation of local fluid temperature profiles for the 
cases ofj = 1 and j = 2. These results, which are shown for ~7 = 0.5 and for NPe = 1 and N,, = 50, 
were obtained from equations (34H37). In the adiabatic region, the fluid temperature is seen to be 
uniform at sufficiently large negative value of q. For the case of N,, = 50, for which the effect of 
axial conduction is relatively small, this uniformity is roughly maintained throughout the adiabatic 
region. Even at q = 0, where the step jump in wall heat flux occurs, the fluid temperature is 
approximately uniform except the region close to the heated wall. As soon as q becomes positive, 
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the fluid temperature profile undergoes rather rapid change because of the imposed heat flux at the 
wall, causing a comparatively abrupt decrease of local Nusselt numbers. That this is not the case 
for Np, = 1 is obvious. Because the heat conducted upstream into the adiabatic region is significant, 
a certain radial temperature profile is already established before the fluid reaches the point q = 0. 
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cr=r,lr,=05 

-\ constanl heat flux 
ot inner wall 

-2 I I 1 1(3)‘4 I I I 1 
0 0.2 0.4 0.6 0.8 I.0 

FE. 8. Local fluid temperatures for the case where step jump in heat flux occurs at the inner wall. 

In fact, it can be seen that the fluid temperature at q = 0 deviates very significantly from uniformity, 
causing the temperature profile at q = 0 to become nearly parabolic in shape. Such deviation 
appears to be larger if the step jump in heat flux occurs at the inner wall. Because of this, the 
temperature profile only changes slightly as the fluid flows through the heated region. This is the 
main reason why the local Nusselt number remains fairly uniform throughout the thermal-entry 
region if the P&ABt number is small. In analyzing the effect of axial conduction in channel flow, 
therefore, it is incorrect to assume a uniform temperature profile at q = 0. Instead, the fluid tempera- 
ture should be taken to be uniform at q = - co, as was done in this study. 
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FIG. 9. Local fluid temperatures for the case where step jump in heat flux occurs at the outer wall. 
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SOLUTIONS THEORIQUES CORRESPONDANT AU TRANSFERT THERMIQUE POIJR 
LES NOMBRES DE PECLET FAIBLES DANS LA REGION D’ENTREE POUR UN 

ECOULEMENT LAMINAIRE A L’INTERIEUR DUN ESPACE ANNULAIRE 

RCum&On obtient les solutions exactes de temperature et les courbes theoriques de Nusselt, valables 
pour Ies nombres de Ptcltt variant depuis un jusqu’a I’intini concernant le transfert de chaleur dans une 
region d’entrke pour un tcoulement laminaire a travers un espace annulaire, soumis a un echelon de flux 
de chaleur a la paroi pour z = 0. Pour tenir compte de I’effet de conduction axiale qui est important pour 
des nombres de P&let faibles, la temptrature du fluide a l’entr&e est choisie uniforme pour z = - r_ et 
les vingt premieres constantes sont calculks separtment pour la region adiabatique (z < z < 0) et la 
region chauffke (0 < z < CC). 

En construisant deux ensembles de fonctions orthonormees provenant des fonctions propres non 
orthogonales, les coefficients des developpements en strie sont alors determinb de fagon que les tempera- 
tures les gradients longitudinaux de temperature pour les deux regions cotincident pour z = 0. Les solutions 
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de temperature correspondant au cas limite N,, = x montre l’excellent accord avec celles publi&s par 
Lundberg et al. [4], qui analystrent le problbme de la rtgion d’entr&e en nkgligeant la conduction axiale. 

THEORETISCHE LdSUNGEN FijR DEN WARMEUBERGANG BEI KLEINER 
PcCLl?T-ZAHL IM EINLAUFGEBIET LAMINAR DURCHSTROMTER 

KONZENTRISCHER RINGR;iUME 

Zusammenfassmg-- Fi,ir das therm&he Einlaufgebiet bei laminarer Striimung durch einen konzentrischen 
Ringkanal werden exakte Liisungen der Temperatur und des theoretischen Verlaufs der Nusseltzahlen 
angegeben. Die Lijsungen gelten fiir PC&t-Zahlen van 1 bis co und unter der Bedingung einer 
stufenfarmigen Anderung der WIrmestromdichte der Wand bei z = 0. Urn den Einfluss der axialen 
WLrmeleitung zu beriicksichtigen, der bei kleinen Ptcl&-Zahlen bedeutend ist, wurde die Eintritts- 
temperatur des Fluids als konstant angenommen bei I = - 30. Die ersten zwanzig Eigenwerte fiir das 
adiabate Gebiet ( - 00 < z < 0) und das beheizte Gebiet (0 < z < co) wurden getrennt berechnet. Durch 
die Konstruktion zweier Scharen orthonormaler Funktionen aus den nichtorthogonalen Eigenfunktionen 
wurden die Serienexpansionskoeffizienten so bestimmt, dass sowohl die Temperaturen als such die 
axialen Temperaturgradienten der beiden Gebiete bei .z = 0 iibereinstimmten. Die LGsungen fiir die 
Temperatur bei der Grenzbedingung Pe = 00 stimmen sehr gut iiberein mit denen van Lundberg et al. 

(4), die das Problem des Einlaufes unter Vernachltisigung der axialen Leitung untersuchten. 

TEOPETI4YECKOE MCCJIEfiOI3AHI’IE TEIIJIOC)BMEHA 13 JIAMMHAPHOM 
TE=IIEHklM R KOHI~EHTPBYECK~X 3A3OPAX rIPI Hkl3KklS cILICJ~YS 

KIEKJIE I30 T3XO)~HOM TEIIJIOTWM YYACTKE 

~HHOTtM,M-&IH BXOAHOFO TenJIOBOrO yYaCTIia IIplI TenJIOO6MeHe B JIaMHHapHOM TeqeHPiII 

Yepea KOH~eHTpWIecKHtt 3a3Op nOJIyYeHbI TOqHbIe peIIIeHlifI ;IJIfl TeMnepaTypbI I1 PaC'IeTHbIe 

KpIlBbIe WIceJI HyCCeabTa,cnpaBeAnMnbIeAnrrsllcenneKneoT I iJO co,&ilFl CKa~KaTenJIOBOrO 

noToKa Isa cTeHKe npti z = 0. &IH yseTa oceBoi% Tennor~pono~uocT~~, mMeIoqeir :3HaYeIIHe 
npn HI*:~HMx qacxax HeKne, TeMnepaTypa XFII~I;OCTR ua nxoxe CqIvraeTcn nocTomniofi IIpll 
z = - co. PaccsllTaHhl nepsbIe HBaJJUaTb CO6CTBeHHbIX 3HaWHLlti II OT~eJIbHOCTEI ;1.‘IfI 

a~~a6aTmecIfoir 0SnacTn (- to < z < 0) H AJIH 06xacTu Harpesa (0 < 2 < co). 3aTea 

nyTeM nOCTpOeHEWI AByX CHCTeM OpTOI?OHaJIbHbIX @yHKL@ M:I IIeOpTO~OIIaJIbHbIX COilCT- 

BeHHbIx (P~HKI@ onpe~enfmmb K03@@mweHTbI pa:momeaIlfi, TaK YTO IiaK TeMIIepaTypbI, 

TaK 11 rpanIteKTb1 TeMnepaTyp finf~ RBYX 06nacTe2i Corzacoi3amcb npH z = 0. Pememfi 

TeMIIepa;ypbI, COOTBeTCT~yI&&e IIpeReJIbHOMy CJIy'Ialo Npe = co IIpeKpacao CornacyIoTcfI 

C IIaHHbIMII. OnV6JIHKOBaHHbIMH tinVHII6eUrOM. MaK-ryeHOM H PefiIiOu~bZCOM (4), KoTopbIe r.~ ~~~~~ I v “.. 

nonywms3 aKam5TmecKoe pememie AmI BxoAIIol OCinacT~l B rrpeI~e6pe~erIm aKcaanbHofi 

TenJIOIIpOBOAHOCTRIO. 


